From wikipedia
Aluminium is a strongly reactive metal that forms a high-energy chemical bond with oxygen. Compared to most other metals, it is difficult to extract from ore, such as bauxite, due to the energy required to reduce aluminium oxide (Al2O3). For example, direct reduction with carbon, as is used to produce iron, is not chemically possible, since aluminium is a stronger reducing agent than carbon. Aluminium oxide has a melting point of about 2,000 °C. Therefore, it must be extracted by electrolysis. In this process, the aluminium oxide is dissolved in molten cryolite and then reduced to the pure metal. The operational temperature of the reduction cells is around 950 to 980 °C. Cryolite is found as a mineral in Greenland, but in industrial use it has been replaced by a synthetic substance. Cryolite is a chemical compound of aluminium, sodium, and calcium fluorides: (Na3AlF6). The aluminium oxide (a white powder) is obtained by refining bauxite in the Bayer process of Karl Bayer.
Both of the electrodes used in the electrolysis of aluminium oxide are carbon. Once the ore is in the molten state, its ions are free to move around. The reaction at the cathode (negative electrode) is
Al3+ + 3 e− → Al
Here the aluminium ion is being reduced (electrons are added). The aluminium metal then sinks to the bottom and is tapped off.
At the anode (positive electrode), oxygen is formed:
2 O2− → O2 + 4 e−
This carbon anode is then oxidized by the oxygen, releasing carbon dioxide.
O2 + C → CO2
The anodes in a reduction cell must therefore be replaced regularly, since they are consumed in the process.
Unlike the anodes, the cathodes are not oxidized because there is no oxygen present, as the carbon cathodes are protected by the liquid aluminium inside the cells. Nevertheless, cathodes do erode, mainly due to electrochemical processes. After five to ten years, depending on the current used in the electrolysis, a cell has to be rebuilt because of cathode wear.
Aluminium electrolysis with the Hall-Hérout process consumes a lot of energy, but alternative processes were always found to be less viable economically and/or ecologically. The worldwide average specific energy consumption is approximately 15±0.5 kilowatt-hours per kilogram of aluminium produced (52 to 56 MJ/kg).
See wikipedia for more details.
Aluminium is a strongly reactive metal that forms a high-energy chemical bond with oxygen. Compared to most other metals, it is difficult to extract from ore, such as bauxite, due to the energy required to reduce aluminium oxide (Al2O3). For example, direct reduction with carbon, as is used to produce iron, is not chemically possible, since aluminium is a stronger reducing agent than carbon. Aluminium oxide has a melting point of about 2,000 °C. Therefore, it must be extracted by electrolysis. In this process, the aluminium oxide is dissolved in molten cryolite and then reduced to the pure metal. The operational temperature of the reduction cells is around 950 to 980 °C. Cryolite is found as a mineral in Greenland, but in industrial use it has been replaced by a synthetic substance. Cryolite is a chemical compound of aluminium, sodium, and calcium fluorides: (Na3AlF6). The aluminium oxide (a white powder) is obtained by refining bauxite in the Bayer process of Karl Bayer.
Both of the electrodes used in the electrolysis of aluminium oxide are carbon. Once the ore is in the molten state, its ions are free to move around. The reaction at the cathode (negative electrode) is
Al3+ + 3 e− → Al
Here the aluminium ion is being reduced (electrons are added). The aluminium metal then sinks to the bottom and is tapped off.
At the anode (positive electrode), oxygen is formed:
2 O2− → O2 + 4 e−
This carbon anode is then oxidized by the oxygen, releasing carbon dioxide.
O2 + C → CO2
The anodes in a reduction cell must therefore be replaced regularly, since they are consumed in the process.
Unlike the anodes, the cathodes are not oxidized because there is no oxygen present, as the carbon cathodes are protected by the liquid aluminium inside the cells. Nevertheless, cathodes do erode, mainly due to electrochemical processes. After five to ten years, depending on the current used in the electrolysis, a cell has to be rebuilt because of cathode wear.
Aluminium electrolysis with the Hall-Hérout process consumes a lot of energy, but alternative processes were always found to be less viable economically and/or ecologically. The worldwide average specific energy consumption is approximately 15±0.5 kilowatt-hours per kilogram of aluminium produced (52 to 56 MJ/kg).
See wikipedia for more details.